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Free Vibration of Delaminated Composite Sandwich Beams
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Consider a sandwich plate with anisotropic composite laminated faces and an ideally orthotropic honeycomb
core. In this paper, a one-dimensional model considering the transverse shear effect and rotary inertia for the free
vibration analysis of a sandwich plate with an across-the-width delamination located at the interface between the
upper face and core is developed. With this model, the natural frequencies and mode shapes of the delaminated
composite sandwich beams can be obtained by solving the eigenvalues and eigenvectors of 12 simultaneous homo-
geneous algebraic equations. Because there are no such general solutions presented in the literature, verification is
done by some special cases such as delaminated composite beams (without core) and perfect composite sandwich
beams (without delamination). Based upon this general solution, the effects of faces, core, and delamination on
free vibration behavior of composite sandwiches are studied thoroughly.

I. Introduction

T HERE are many advantages of composite sandwiches over
the conventional structural materials, such as high bend-

ing stiffness, low specific weight, and good thermal and acous-
tical insulation. However, these new materials also induce some
new problems. One of them is delamination, which may occur
either on the interply of composite laminated faces or on the
interface between face and core. It is, therefore, important to know
the effect of delamination on some mechanical problems like free
vibration.

To study the delamination effect on free vibration, Kulkarni and
Frederick1 considered a circular cylindrical shell with a circumfer-
entially symmetric delamination of small length at the middle sur-
face and proposed that the natural frequency was a parameter that
reflects the debonding or weakening of the composite. Ramkumar
et al.2 studied the free vibration of composite beams with through-
width delamination and compared the theoretical results with the
results of vibration experiments on a debonded laminated cantilever
beam. The analytical prediction found to be consistently much lower
than the experimental values indicates that the residual bending
stiffness was grossly underestimated in their analysis. Cawley and
Adams3 reported that the shift in natural frequency due to the de-
lamination provides the basis for nondestructive testing via vibration
technique. By considering the coupling of longitudinal and flexu-
ral motions in the split region, Wang et al.4 developed a theoret-
ical model to analyze the free vibration of split isotropic beams.
Later, Mujumdar and Suryanarayan5 studied the effect of delam-
ination on flexural vibration of an isotropic beam under the as-
sumption that the split regions of the beam should be constrained
to move together in the transverse direction. Tracy and Pardoen6

studied the effect of delamination on natural frequency of sym-
metric laminated beam containing midplane delamination by using
the Euler beam theory and verified the results by experiments and
the finite element method. Recently, Shen and Grady7 used the
Galerkin method to analyze the delamination effect on natural fre-
quency and vibration mode shape of composite laminated beam
and verified their results by experiments, in which the couplings
between longitudinal vibration and transverse bending motion were
also considered.
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The flexural vibration analyses of perfect sandwich plates were
presented earlier by Yu,8~10 in which the sandwich plate was con-
fined to one with isotropic faces and an orthotropic core. Recently,
bending and free vibration analyses of sandwich plates with un-
balanced anisotropic laminated faces and an orthotropic core were
presented by Monforton and Ibrahim,11-12 Ibrahim et al.,13 and
Kanematsu and Hirano14 by using the finite element method and
the Rayleigh-Ritz method.

As stated in the last two paragraphs, there are many works con-
cerning the vibration of delaminated composites and perfect sand-
wiches. However, it still lacks research concerning the vibration of
delaminated composite sandwiches. In this paper, a one-dimensional
model of delaminated composite sandwiches proposed by Hwu and
Hu15 for buckling and postbuckling problems is modified to study
free vibration problems of delaminated composite sandwiches. The
results are general enough and can be reduced to the cases of de-
laminated composites or perfect sandwiches, which are used to
verify our solutions. Meanwhile, the various effects such as trans-
verse shear modulus and thickness of core, delamination length
and location, fiber direction and stacking sequence of laminated
faces on natural frequencies, and the associate mode shapes are
also studied.

II. Vibration Analysis
Recently, a one-dimensional mathematical model was developed

by Hwu and Hu15 for the buckling and postbuckling of delami-
nated composite sandwich beams. In that model, the delaminated
composite sandwich beam is separated into four regions as shown
in Fig. 1. Regions 1 and 4 are considered to be composite sand-
wich beams with the faces resisting in-plane force Nx and bending
moment Mx, and the core undergoing the transverse shear force
Qx, whereas regions 2 and 3 are considered to be special cases
of sandwiches that also carry in-plane force, bending moment,
and transverse shear force. In all regions, the deformation of the
core and faces are assumed to have the form of the Timoshenko
beam, i.e.,

u = M0 + z [yxz - —

where u and w denote the displacements in the x and z directions,
respectively; MO is the midplane axial displacement; and yxz is the
transverse shear strain. Although u is a linear function of z, MO, Xxz,
and w are independent of z and are functions of x only. With this
assumption for the sandwich beam deformation, the equations of
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Fig. 1 Geometry and notation of delaminated composite sandwich
beam.

motion can be derived by a way similar to that described in the
paper by Hwu and Hu.15 The results are

3NX

~3x~
^2,., 32w— (2a)

3x

where

12
3w
— (2b)

and /, p, h, and fix are, respectively, the moment of inertia (with
respect to the midplane), mass density, thickness, and rotation angle
of the sandwich beams; q is the normal pressure distributed over the
top or bottom surface of the sandwich beams. The resultant forces
NX,MX, and Qx are related to the midplane axial strain ex(), curvature
KX, and the transverse shear strain yxz by

Mx = (2c)

Qx =
where

_ 9wo 1 /3w\2 dftx 3 ( 8wxx = -r- = T~ YXZ - ~ (2d)
3x 3

and where AH, #n, £>n, and 5 are, respectively, the extensional,
coupling, bending, and transverse shear stiffnesses of the composite
sandwich beam. The stiffnesses A n , B\ i , and D\ i are contributed by
the faces of the sandwiches, whereas the shear stiffness S is mostly
contributed by the core. The formulas for calculating AH, #11, and
DH are the same as those given in the classical lamination theory
except that the plane z — 0 is located on the midsurface of the
entire sandwich and not the face.15 To calculate the transverse shear
stiffness S, the shear stress distribution is assumed to be uniform
across the core and parabolic across the face.16 Hence,

S =
4
3

in which Q55 = Gxzcos20 + Gyzsm20, where Gxz, Gyz, and 0
are, respectively, the transverse shear moduli and fiber direction of
the lamina. The terms c and Gc

xz are the thickness and effective
transverse shear modulus of the core, N is the number of layers of
composite sandwich (excluding the core), and Zk is the coordinate

of k\h layer as shown in Fig. 1. If only the composite laminate
faces are considered, the first term cGc

xz should be deleted since it
is contributed by the core. It should also be noted that in Eq. (2a)
the longitudinal inertia term pu() has been neglected since it is small
for the lower flexural modes of beams.5

The first equation of Eq. (2a) shows that Nx is a constant through-
out the beam and is now set to be the compressive axial load P, i.e.,
NX — -P> Knowing that P is a constant, by the first and second
equations of Eq. (2c) the midplane axial strain 6X() and the bending
moment Mx can be expressed in terms of the curvature KX , which are

(3a)

where

- -r1- (3b)

If the axial load P is treated as a known value, the three equations
of motion shown in Eq. (2a) may be reduced to only one equation
expressed by the transverse displacement w. Use of the second equa-
tion of Eq. (2a) and the third equation of Eq. (2c) may provide the
relation between yxz and w. By this relation and the second equation
of Eq. (2d), the curvature KX can be expressed in terms of w. They are

—
3x2

ph d*w
S 3t2

q
S

(4)

Substituting the third equation of Eq. (2c), and the second equations
of Eqs. (3a) and (2d) into the third equation of Eq. (2a) and differ-
entiating both sides of the equation with respect to x, one can write
the equation of motion as

D a^2 (5a)

With the relations provided in Eq. (4), the equation of motion for
the composite sandwich beams can now be expressed by only one
parameter w,

phi 34w 32w 32w D 32q I 32q

(5b)

If we now consider the problems of free vibration, q = P = 0 for
regions 1 and 4, and the equations of motion (5b) can be reduced to

D,
a4u;,- 34w;/ pi hi I i 34i

Si 3t4

/ = 1, 4 (6)

Here the subscript / denotes the region number. As suggested by
Mujumdar and Suryanarayan,5 q and P will not be zero for regions
2 and 3. They showed that for the cases of delaminated isotropic
beams the free mode model, though mathematically admissible, is
not physically feasible since it gives vibration modes with overlaps
of deformation that violate compatibility. In reality, however, the
tendency of one of the delaminated layers to overlap on the other
will be resisted by the development of a contact pressure distribu-
tion between the adjacent layers. Such a pressure distribution would
constrain the transverse deformation of these adjacent layers to be
identical and thus ensure compatibility. The two segments in the
delamination region, though having identical transverse displace-
ments, are assumed to be free to slide over each other in the axial
direction except at their ends, which are connected to the integral
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segments. The contact is assumed to be frictionless and uniform.
Thus, for regions 2 and 3, we assume

W2 = P2 = -P3 = P = const,
(7a)

where the normal pressure q can be represented in harmonic form
as

q = q0 sin cot, qo = const (7b)

With the preceding assumptions, Eq. (5b) can be simplified. More-
over, by the fact that the rotary inertia / is higher order in h, which
is small even for the sandwich beam, and the in-plane forces are
usually far smaller than the transverse shear forces for the flexural
vibration problems, the terms a)2I/S and P/S might be far less than
unity and may be neglected for the convenience of mathematical ma-
nipulation. For the sake of prudence, we will check this assumption
after the natural frequencies and the mode shapes are obtained. Now,
the equations of motion for regions 2 and 3 can be simplified as

-1 /2 +

,32UJ2
3x2

P2h2D2\

S2

32w2

3t2

3x23t2 S2 3t4

(8)
n

3 dx23t2
t
+ dt*

32w2 32w2

in which the local coordinates x2 and *3 are chosen to be the same
as the global coordinate x (see Fig. 1). By adding the preceding two
equations, the unknown normal contact pressure q and the axial load
P can be eliminated. The result is

" dx4

p2h2I2 t

p2h2D2 +
84w2

(p2h2

For harmonic motion,

Wi(xi, t) = xi) sin cot, i = 1,2,4 (10)

in which a> is the natural frequency and W; is the mode shape for the
zth region. Substituting Eq. (10) into Eqs. (6) and (9), one can obtain
the general solutions of the differential equations (6) and (9) as

Wi(xt) = Fn cosh A,,-*/ + F/2 sinh Ajjc/ -f- F,3 cos /x/jc/

+ Fj4 sin / / , / X f , i = 1, 4, (1 la)

W2(x) = F2i coshX2jc + F22 sinhX2x + F23 cos jji2x + F24 sin fji2x

where
fi) , * /n ~ ^

2(D2
(lib)

{ - (h + h) + (h + h)2 + 4(m2 + m})(D2 + D3)}

co*
2(D2-

/3) + V (h + hY + 4(m2 + m3)(D2 + D3)}

and

It = It
PihjDj

Si '
Pi hi _ PJ hj Ij
co2 Si

(lie)

where the various F/y are the unknown coefficients to be determined
by the continuity conditions and boundary conditions set for the
problem.

III. Continuity and Boundary Conditions
Usually, the continuity conditions in the beam problems include

the continuity of the transverse displacements, slopes, bending mo-
ments, and shear forces. Since the transverse shear effects are con-
sidered in all regions, the slopes of all regions are expressed in
the form

3xt
/ = !,..., 4 (12)

of which the transverse shear strains yXZi obtained from Eq. (4) are
given as

= Pihi_ f
Si J

_ Pi 3w2
Yxzi-^~3x~

3t2

32w2 dx, i = 2, 3

(13)
Since the face made up of composite laminate is much thinner com-
pared with the core thickness, the slope of region 3 is dominated
by the derivative of deflection, 3w2/3x, of which transverse shear
strain yXZ3 is of little effect. Moreover, region 2 is assumed to vi-
brate together with region 3. Therefore, the slope of regions 2 and 3
may now be approximated by 3w2/3x for the convenience of math-
ematical manipulation, which should be verified after the natural
frequency and mode shape are calculated.

With the preceding approximation, the continuity conditions at
the crack tips for the present problem can then be expressed as

_ Bw2
~~ (Yxz)l — "7—

(P/2)h
(14)

It should be noted that the transverse shear force Qx in all regions
is related to yxz by the third equation of Eq. (2c). The bending
moment Mx and the transverse shear strain yxz are related to the
transverse displacement w by the second equation of Eq. (3a) and
Eq. (4). With these relations, it is noted that the continuity conditions
shown in Eq. (14) can all be expressed in terms of the transverse
displacement wf except that the bending and shear force continuity
have the extra unknown axial load P and normal pressure q in which
the axial load P may be found by the satisfaction of compatibility
of axial displacements at the tip of delamination. That is,

1 3w2l [
(«o)2 + 5(c+/2)^ = ("°>3

Jx = —a L

Bw2i r fidw2)^ = ("0)3 -f^-
Jx=a L

(15)

JX=a

The midplane axial displacement UQ of regions 2 and 3 can also be
expressed in terms of w by substituting the first equation of Eq. (2d)
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into the first equation of Eq. (3 a) and integrating with respect to x.
The results are

<i~TL ~ o / ( ~?~ } dx + const (16)3x 2 J() \ dx )

Substituting Eq. (16) into Eq. (15) and subtracting the second equa-
tion (15) by the first equation (15), we obtain

~
_ (B3- B2)-h/2J3w2 9102

~dx~ (17)

By using the relation given in Eq. (17), the other unknown q may be
found by the satisfaction of compatibility of transverse shear strain at
the crack tip of delamination. However, this approach may lead to a
nonlinear equation of F/7, which may cause trouble in mathematical
manipulation. To avoid that, we ignore qi/Si, i — 2, 3, since they
may be far smaller than the other terms shown in the second equation
of Eq. (13). This assumption will also be checked after the natural
frequencies and mode shapes are obtained.

The continuity conditions (14) will now provide 8 linear ho-
mogeneous algebraic equations in 12 unknown coefficients F/7
(/ = 1, 2, 4; 7 = 1, 2, 3, 4). The remaining four equations come
from the boundary conditions for both ends of the sandwich beams.
In the following, three different boundary conditions will be studied.
They are the following:

1) Simply supported ends:

on j =0

w4 = 0, (M,)4 = 0, onjc4 = 0
(18a)

2) Clamped-clamped ends:

W4 — 0, ———
0 X4

3) Clamped-free ends:

wi — 0, —-

(Mx)4 = 0,

on jci =0

on *4 = 0

on jci =

= 0, on JC4 = 0

(18b)

(18c)

In the preceding text, all of the boundary conditions provide four
equations. Combining these 4 equations with the 8 continuity equa-
tions, one obtains 12 linear homogeneous algebraic equations in 12
unknown coefficients F//. The frequencies and mode shapes can be
obtained as the eigenvalues and eigenvectors of this equation set.

IV. Special Cases
Since no published analytical results have been found in the liter-

ature for the vibration analysis of delaminated composite sandwich
beams, the verification will be done by some degenerate cases such
as perfect sandwich beams (without delamination) and delaminated
composite beams (without core).

A. Perfect Sandwich Beams (Without Delaminations)
For the special case that the delamination does not exist in the

sandwich beam, the problem becomes much simpler than those dis-
cussed previously. In this case, there is no need to separate the beam
into four regions. All we need to do is substitute the boundary condi-
tions (18) into the general solutions of the first equation of Eq. (1 la)
for the perfect sandwich beams. The natural frequencies co and the
mode shapes Wn (x) for three different boundary conditions of per-
fect sandwich beams are then obtained as follows.

1) Simply supported ends:

(19a)

Wn(x) = sin /xi* ———— - —
sinh^L

800

200

o Ravilleetal.[17]

—— Present model

10 15 20

Mode number
30

Fig. 2 Comparison of natural frequencies of perfect sandwich beam
(beam 5 of Ref. 17).

2) Clamped-clamped ends:

2(1 - cosh ML cos f i i L ) + I A (CD) A(oo)\

= 0
coshAiL (19b)

— A(to) sin[i\L

3) Clamped-free ends:

+ — 1 + —};A2(cD) coshX\Lcos \JL\
M L V\ J

— — — I A(co) s inhAiLsin/xiL = 0

Wn(x) = coshAiJc — — (sinhXiJc —
(19c)

x

where

- (pha)2/SX2)
(19d)

To verify the preceding results, comparison is made with that
presented by Raville et al.17 for the clamped-clamped boundary
condition in which the effects of rotary inertia and transverse shear
deformation of the face sheets are neglected. Figure 2 shows that
the present results are little lower than those given by Raville et al.,
a which is reasonable because they neglect rotary inertia and trans-
verse shear deformation.

B. Delaminated Composites (Without Core)
An example of delaminated composite beam [0/90/0/90]>y made

of T300/934 graphite/epoxy with debonding along interface 2 (given
in the paper by Shen and Grady7) is studied for the purpose of ver-
ification. The results presented in Fig. 3 show that the fundamental
resonant frequencies obtained by the present model match well with
experimental results as compared with those obtained by the models
given by Shen and Grady.7 These results give us confidence in the
present model, which is general and can be reduced to solve the free
vibration problems of delaminated composite laminates.

V. Results and Discussion
The geometric notation of delaminated composite sandwich

is shown in Fig. 1, in which the face and core of the sand-
wiches are made of carbon/epoxy and aluminum honeycomb, re-
spectively. The reference material properties of carbon/epoxy are
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Table 1 Comparison of />,•/$, wJ/i/S,-,* 7*Zj./(dw,-/djc), and (2aqi/Si)/^x z . with unity ([02/902/02/honeycombL)

2a/L

0.2

0.3

0.4

Boundary
coditionsb

s.s.
c.c.
c.f.
s.s.
c.c.
c.f.
s.s.
c.c.
c.f.

P/S2

1.01 x 10~2

5.59 x 10~3

1.56 x IO-3

8.84 x 10~3

3.45 x 10'3
7.52 x IO-4

5.14 x 1Q-3

1.48 x IO-3

3.83 x 1C"4

PIS, (W(d«*/d*)),,o (y«,/(d«2/dx)),.o ((2^/52)7x^=0 «2««/53)/y«3),.o
6.11 x 1(T3

2.89 x 1(T3

8.09 x 1(T4

4.58 x 10~3

1.78 x 1(T3

3.90 x 1(T4

2.66 x 1(T3

7.67 x 10~4

1.99 x 1(T4

1.25
8.73
3.21
1.94
1.57
1.24

xlO-3

xl(T3

xl(T3

x 1(T3

x 1(T2

x 10~3

5.7 x 10~3

2.2 x 10-?
6.69 x 10~4

6.34 x
4.49 x
1.69 x
9.86 x
7.93 x
5.12 x

1(T4

io-3

1(T3

io-4

1(T3

io-4

2.9 x 1(T3

1.11 x
1.74 x

IO-2

io-4

9.08 x
5.78 x
4.82 x
3.51 x
1.12 x
5.61 x
9.24 x
1.19'x

io-4

io-4

io-4

io-4

io-3

io-4

io-4

io-3

5.4 x 10~4

2.22 x 10~4

1.3 x 10~3

1.12
7.68
2.49
1.28
2.02
2.62
1.21

x 10~3

xlO~ 4

x 10~3

x IO-3

x 10~3

x 10~3

x 10~3

'da%I2/S2 = 7.74 x 10-4, and ufa/S^ = 1.72 x 1(T6.• " uDs.s. = simply supported, c.c. = clamped-clamped, and c.f. = clamped-free.
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^ Experiment by Shen and Grady [7]
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———— Present Model
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Fig. 3 Comparison of delamination length effect on natural frequency.

£n = 105 GPa, £22= 8.74 GPa, Gi2= 4.56 GPa, v12= 0.327,
pf = 1.6 x 103 kg/m3, whereas those of the aluminum honeycomb
core are Gxz = 103 MPa, Gyz = 62.1 MPa, and pc = 16 kg/m3.14

The ply thickness fply is 0.125 mm, the length of the sandwich
beam L is 100 mm, and the reference core thickness c0 is equal
to 10 mm. The sandwich construction [02/902/02/honeycomb], is
used as an example to study the effects of delamination and core
on free vibration, whereas [^/90/honeycomb]^ is used to study
the effect of fiber orientation. To study the effect of stacking se-
quence, we pile up the faces of the sandwiches by the laminate with
fiber directions in 0 and ±45 deg. The reference natural frequency
coo used in the following figures and tables are then calculated from
the perfect cantilever sandwich beams of [02/902/02/honeycomb].,.,
[04/90/honeycomblv, and [0/—45/45/0/honeycomb].v, respec-
tively. The values are &>() = 295.54 rad/s for the study of delam-
ination and core effect, o>0 = 307.49 rad/s for the study of fiber
orientation effect, o>0 = 285.82 rad/s and for the study of stacking
sequence effect.

Before studying the effect of delamination, core, and face on the
free vibration, we first check all of the assumptions stated in the
previous sections: 1) normal pressure #(= qQ sin cot) is uniform
along the contact region, 2) P//5/ and o^/i/Si, i = 2, 3, are far
smaller than unity, 3) yXZ2 and yXZ3 are far smaller than dw2/dx, and
4) 2aqi/Si , i = 2, 3, are far smaller than yXZ2 and yXZ3. The numerical
results given in Table 1 and Fig. 4 show that these assumptions are
valid under small flexural vibration, usually w/h < 0.1.

A. Delamination Effect
The delamination lies symmetrically with respect to the midpoint

of the beam. Figure 5 shows the relation between the first mode natu-
ral frequency co/coo and delamination length 2a/L for clamped-free
ends as the core thickness c is reduced to be zero gradually. From
this figure, it is shown that the existence of delamination will lower

0.3

0.2

0.1

0-0

2a/L = 0.2

0.26 s.s. B.C.

0.186

0.108

c.c. B.C.

c.f. B.C.

-0.1 0.0 0.1 0.2

x/L
Fig. 4 Normal pressure distribution along delamination region
([02/902/02/honeycombL).

3\
3

0.4 0.6

2a/L
Fig. 5 Effect of delamination length on first mode natural frequency
of cantilever composite sandwich beam ([02/902/02/honeycomb]s,
carbon/epoxy laminated faces).

the natural frequencies. The upper bound of natural frequencies
denotes that of the perfect sandwich, whereas the lower bound de-
notes that of detached sandwich beam. Moreover, this figure reveals
that the natural frequency of a delaminated composite sandwich
beam decreases gradually when the core thickness decreases and
will approach that of a delaminated composite laminate as the core
thickness is reduced to zero. The results of delaminated composite
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Shen and Grady [7] -

Present Mode

2.0 3.0

2a (in)
Fig. 6 Effect of delamination length on first mode natural frequency
of cantilever composite sandwich beam ([0/90/0/90/honeycomb]s,
graphite/epoxy laminated faces).

0.8

0.6

3
\
3

0.2
c=//2

0.0 0.2 0.4 0.6 0.8 1.0

Xc/L

Fig. 7 Effect of span wise location of delamination on first mode natural
frequency of cantilever composite sandwich beam.

beams are represented by setting c = 0, which have been checked
in the last section through the presentation of Fig. 3. To see more
clearly, a counterpart of Fig. 5 with the face composed of the same
composite laminates used by Shen and Grady7 is plotted in Fig. 6.
These results also mean that the model of delaminated composite
sandwich proposed here is reliable.

The effects of delamination along spanwise locations on natu-
ral frequency for cantilever beam are shown in Fig. 7. It shows
that the natural frequency of a delaminated composite sandwich
will also approach that of a delaminated composite laminate when
the core thickness is reduced to zero. The weakening effect of the
delamination on the first mode natural frequency appears to become
a minimum when the delamination is placed near the free end of a
cantilever beam; that is, it appears on the high curvature of the first
mode shape. As to the case of simply supported ends, the minimum
weakening effect of the delamination occurs when the delamination
is located symmetrically with respect to the midpoint of the beam.18

Similar phenomena occur for delaminated composite beams, which
have been explained by Tracy and Pardoen,6 that the effect of the
delamination is reduced as the delamination moves from regions of
high shear force to regions of high curvature. The same conclusions
are also proposed by Mujumdar and Suryanarayan5 for delaminated
isotropic beams.

As for free vibration mode shapes, Fig. 8 shows that the mode
shapes of a delaminated composite sandwich beam will approach
those of a delaminated composite laminate as the core thickness is
reduced to zero. It also shows that the mode shapes of delaminated
sandwich beams differ from those of perfect sandwich beams, es-
pecially in the region of delamination because the effective bending
stiffnesses £>/, i = 2, 3, of the delaminated region is smaller than
that of region 1. Therefore, the deflection pattern is significantly
influenced by the delamination.

B. Core Effect
The effect of core on the natural frequency is usually discussed

by considering the thickness and effective transverse shear modu-
lus separately, since the transverse shear stiffnesses Si9i = 1, 2, 4,
given in Eq. (2d), are related to core thickness c and transverse shear
modulus Gxz of the core. Figure 9 shows the relation between natu-
ral frequency and transverse shear modulus Gxz for various central
delamination sizes for clamped-free boundary conditions, where
GJZO = 0.103 GPa, and the core thickness CQ is kept as 10 mm.
The figure shows that the natural frequency depends significantly
on the transverse shear modulus when the delamination length is
short, whereas there is almost no influence on frequency for longer
delaminations. This phenomenon may be explained by thinking that
the contribution of the core is relatively small in the delamination
region. Therefore, the longer the delamination, the smaller the trans-
verse shear modulus effect.

To study the effect of core thickness on the natural frequency, the
transverse shear modulus Gxz is kept fixed and set to be equal to

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.40.0

x/L
Fig. 8 Effect of delamination length on first mode shape of cantilever sandwich beam.
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Fig. 9 Effect of transverse shear modulus on first mode natural fre-
quency of cantilever delaminated composite sandwich beam.

Fig. 10 Effect of core thickness on first mode natural frequency of
cantilever delaminated composite sandwich beam.

GXZ(r The results are shown in Fig. 10 for various central delami-
nation length. As in the case of the transverse shear modulus, the
natural frequency depends on the core thickness significantly when
the delamination is short, whereas there is almost no influence on
frequency for longer delaminations.

C. Face Effect
To study the effect of composite sandwich face, we consider the

thickness, fiber direction, and stacking sequence of the laminate
composite. Before the calculation, we may expect that the natu-
ral frequency will increase when the face thickness increases, or
when the fiber is oriented to the direction of x axis shown in Fig. 1.
Figure 11 verifies this expectation. A series of composite sandwich
construction [#n/90/honeycomb}v are used in this case. The refer-
ence parameters are /0 = 0.625 mm (i.e., n — 4), #0 = 90 deg,
and 2a/L = 0.2. The thickness effect is considered by varying the
number of 9 — 0 deg lamina, i.e., changing n from 0 to 4.

As for the stacking sequence, we consider five different sequences
shown in Table 2. For different delamination length under clamped-
free boundary conditions, this table shows that the natural frequency
of the delaminated sandwich with stacking sequence ss 1 is always

Table 2 Effect of stacking sequence on the natural frequency
of delaminated sandwich [composite laminate/honey comb Jv

beams with clamped-free ends

CO/CDQ

2a/L ssl*

0.2
0.3
0.4
0.5

0.571
0.348
0.236
0.173

0.492
0.292
0.196
0.143

0.459
0.269
0.180
0.131

0.457
0.269
0.180
0.131

0.409
0.237
0.158
0.115

*ssl = [O/-45/45/0], ss2 = [-45/0/45/0], ss3 =
[45/-45/0/0], and ss5 = [-45/0/0/45].

[O/O/-45/45], ss4 ;
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 11 Effect of face on first mode natural frequency of delaminated
composite sandwich beam.

the highest one, whereas that of ss5 is always the lowest one. The
same conclusions are also found for simply supported and clamped-
clamped boundary conditions.18 The reasons are the same as those
described in Hwu and Hu's paper15 for the effect of stacking se-
quence on buckling load; i.e., the natural frequency depends on the
effective bending stiffnesses Z)2 and D3 of the delaminated regions,
not D\. This means that the order of the relative natural frequen-
cies shown in this table is ssl > ss2 > ss3 > ss4 > ss5, which is
consistent with the order of Z)s(or ^2), not D\.

VI. Conclusion
A one-dimensional model of free vibration behavior of delami-

nated composite sandwich beams considering transverse shear effect
and rotary inertia has been established in this paper. The solutions
are general and can be reduced to solve the free vibration problem of
delaminated composite beams and perfect sandwich beams. When
the core thickness is close to zero, the solutions of the present model
approach those of delaminated composite beam, which verifies the
present model. Meanwhile, the effect of core, faces, and delamina-
tion on natural frequencies and the associate mode shapes are also
discussed in this paper.
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